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SEISMIC EFFICIENCY OF A CONTACT EXPLOSION

AND A HIGH-VELOCITY IMPACT

UDC 550.348.425.4N. I. Shishkin

The seismic energy transferred to an elastic half-space as a result of a contact explosion and a
meteorite impact on a planet’s surface is estimated. The seismic efficiency of the explosion and
impact are evaluated as the ratio of the energy of the generated seismic waves to the energy of
explosion or the kinetic energy of the meteorite. In the case of contact explosions, this ratio is in the
range of 10−4–10−3. In the case of wide-scale impact effects, where the crater in the planet’s crust
is produced in the gravitational regime, a formula is derived that relates the seismic efficiency of an
impact to its determining parameters.
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Introduction. Estimating the seismic energy transferred to the medium as a result of underground explo-
sions and impacts of space bodies on the Earth is important for predictions of the seismic effect on engineering
facilities, biota, the Earth’s crust, and the planet as a whole.

The energy of seismic motion for underground atomic explosions is determined in [1], where it is shown that
the seismic efficiency (SE) ks ≡ Es/E0 (Es is the energy of seismic waves and E0 is the energy of explosion) has the
following values: 0.1% in alluvium, 1.2% in tuff, 4.9% in rock salt, and 3.7% in granite. These data were obtained
for fairly great charge depths. As the charge depth decreases, the value ks increases. As shown in [2], a decrease in
the charge depth results in an increase in the SE to a value close to 10%.

The seismic efficiency of a high-velocity impact was evaluated in [3–8]. From the papers cited, it follows that
the value of ks was estimated with a large error (ks = Es/E0 = 10−6–10−2, where E0 is the kinetic energy). Its
dependence on the parameters determining the seismic effect of impacts is also unclear. The value ks for contact
explosions is not known.

The object of the present study is to obtain the functional dependence of the seismic efficiency on the
determining parameters in the cases of contact explosions and high-velocity impacts.

1. Confined Explosion. The seismic effect of a confined underground explosion in rock is described using
the Haskell model [1]. The longitudinal P -wave generated by an explosion is characterized by the potential ϕ(t, r)
of the displacement field u(t, r) of the form

u(t, r) =
∂ϕ(t, r)

∂r
, ϕ(t, r) = −Φ(∞)

r
f(τ), τ =

1
t0

(
t − r

cP

)
,

f(τ) = 1 − e−τ (1 + τ + τ2/2 + τ3/6 − Bτ4).
(1.1)

Here t is the time reckoned from the time of explosion, r is the distance from the point of explosion, cP is the
propagation velocity of the longitudinal waves, and f(τ) is a function of the source equivalent in the generated
P -wave to the explosion. Relation (1.1) contains three free parameters: t0, Φ(∞), and B, which are chosen from
experiments. The physical meaning of these parameters is as follows. The parameter t0 determines the time scale of
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Fig. 1. Diagram of rock fracture in a confined explosion (according to Rodionov [9]): 1) camouflet
cavity; 2) fracture region; 3) region of radial cracks.

seismic motion. In this case, the characteristic length defining the dimensions of the seismic source (the explosion
source) cP t0 is approximately equal to the radius of the region of rock fracture surrounding the central region of
the explosion (Fig. 1). In the case of great explosion sources cP t0 ≈ re (re is the elastic radius of the explosion
source). In the case of shallow explosion source depths, the elastic radius is close to the radius of the region of
radial cracks [9].

The parameter Φ(∞) is equal to within 4π to the volume displaced into the elastic-strain region:

V∞ = 4πΦ(∞) (1.2)

(V∞ is the displaced volume). If a region of radial cracks (great explosion source depth) is absent and if rock
compaction and loosening at the explosion source can be ignored, the volume V∞ is equal to the volume of the
camouflet cavity:

V∞ ≈ (4/3)πr3
cav (1.3)

(rcav is the radius of the camouflet cavity). Relations (1.2) and (1.3) imply the approximated ratio Φ(∞) ≈ r3
cav/3.

The radius of the camouflet cavity can be found from the well-known empirical formulas given in [10, 11].
The parameter B (0 � B < 0.5) depends on the properties of the medium in which the explosion occurs

(density, porosity, water saturation, lithostatic pressure, etc.). In the elastic model, this parameter is a function of
only Poisson’s coefficient ν. There is a weak correlation between B and ν. As a rough approximation, we can set
B ≈ ν.

The source (1.1) produces the displacement and stress fields described by the formulas

u

cP t0
= κ

(f(τ)
R2

+
f ′(τ)

R

)
,

σrr

ρc2
P

= −κ

(
4γ2 f(τ)

R3
+ 4γ2 f ′(τ)

R2
+

f ′′(τ)
R

)
,

σθθ

ρc2
P

=
σϕϕ

ρc2
P

= κ

(
2γ2 f(τ)

R3
+ 2γ2 f ′(τ)

R2
− (1 − 2γ2)

f ′′(τ)
R

)
, (1.4)

σrr − σθθ

2ρc2
P

= −κ

(
3γ2 f(τ)

R3
+ 3γ2 f ′(τ)

R2
+ γ2 f ′′(τ)

R

)
,

where σik are the stress-tensor components, R ≡ r/(cP t0), γ = cS/cP , and cS is the shear-wave velocity,

κ ≡ Φ(∞)/(cP t0)3. (1.5)

Below, we shall need formulas that describe the residual displacements and stresses occurring in the neigh-
borhood of explosion source after the P -wave generation. These formulas follow from relation (1.4) as t → ∞:

u

cP t0
=

κ

R2
,

σrr

ρc2
P

= −4γ2
κ

R3
,

σθθ

ρc2
P

=
2γ2

κ

R3
,

σrr − σθθ

2ρc2
P

= −3γ2
κ

R3
. (1.6)
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The energy of the generated P -wave is defined by the formula obtained in [1]:

Es = πα(B)κρc2
P Φ(∞), α(B) = (5 + 3(1 + 24B)2)/64. (1.7)

Introducing the seismic moment of explosion M0 ≡ 4πρc2
P Φ(∞), we write relation (1.7) as

Es/M0 = (1/4)α(B)κ. (1.8)

The value of the parameter B is determined in [1] for explosions in four rocks: B = 0.49 in alluvium, B = 0.05
in tuff, B = 0.17 in rock salt, and B = 0.24 in granite. The parameter B depends not only on the properties of the
rock but also on the explosion source depth. As the explosion source depth decreases, the parameter B increases.
The estimate of B obtained in [2] for small camouflet depths shows that for strong rock, B ≈ 0.3. Confining
ourselves to strong effects of explosions and impact in the Earth’s crust or in the crust of a different planet, we
assume that the planet’s crust is rock close in properties to granite. In this case, α(B)/4 ≈ 0.75 and formula (1.8)
becomes

Es/M0 = 0.75κ. (1.9)

The parameter κ is related [through Φ(∞)] to the displaced volume V∞, which is defined as the product of
the area S1 of the surface of the fracture region S and the residual displacement u∞ of the points of this surface:

V∞ = S1u∞ = 4πr2
eu∞.

Here re is the radius of the surface S (the “elastic radius”). According to (1.5) and (1.6), the residual displacement
u∞ is defined by the formula

u∞ = Φ(∞)/r2
e . (1.10)

If fracture results from shear deformations, on the boundary r = re, the following condition should be
satisfied:

σs = |(σrr − σθθ)/2|r=re = 3γ2
κρc2

P (cP t0/re)3. (1.11)

Here σs is the shear strength of rock. Eliminating κ from (1.5), (1.10), and (1.11), we obtain

u∞ = σsre/(3γ2ρc2
P ). (1.12)

The definition of the parameter κ and formula (1.11) imply

κ =
σs

3μ

( re

cP t0

)3

.

Because the quantities re and cP t0 are close, setting their ratio equal unit, we obtain

κ =
σs

3μ
=

σs

3γ2ρc2
P

≈ σs

ρc2
P

, (1.13)

since for strong rock, 3γ2 ≈ 1. Thus, the parameter κ is approximately equal to the ratio of the shear strength of
rock to its adiabatic rigidity.

Using formulas (1.2), (1.3), and (1.5), one can show that the radii of the camouflet cavity and the rock-
fracture region are related by the formula

rcav =
( 3σs

ρc2
P

)1/3

re,

which is close to the similar relation obtained in [9] by a somewhat different method.
In view of (1.13) formula (1.8) becomes

Es/M0 = 0.54σs/(2μ). (1.14)

Relation (1.14) coincides with the similar relation between seismic energy and seismic moment obtained in the
theory of the earthquake source [12]:

Es/M0 = σs/(2μ).

Although the conditions in an earthquake source and an explosion source differ significantly, the functional
relationship between the seismic energy and seismic moment is identical in both cases:
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Fig. 2. Configuration of the fracture region in a contact explosion: 1) crater; 2) frac-
ture region.

Es/M0 = cσs/μ

(c = 0.5 for earthquakes and c = 0.27 for explosions). This ratio depends only on the relative shear strength of the
rock, which indicates similarity between the mechanisms of seismic-wave generation in explosions and earthquakes:
elastic-stress relaxation by shear fracture at the source.

The seismic energy of an explosion can be written as

Es = 0.75σsu∞S1. (1.15)

The product σsu∞S1 = σsV∞ is the work done by strength forces to form the volume being displaced. Part of
this work is converted to the energy of seismic waves. The remaining part is converted to the potential energy of
elastically deformed rock in the neighborhood of the fracture region.

From relation (1.15) it follows that the energy of seismic waves can be calculated given the rock strength
and the area and residual displacement of the elastoplastic boundary.

Relations (1.12) and (1.15) imply that the SE of a confined explosion can be written as

ks = 0.75ρc2
P (σs/μ)2α3

e, (1.16)

where αe = reE
−1/3
0 is the specific radius of the explosion source.

As an example, we estimate the SE of a confined explosion in granite. The parameters of granite are taken
from [1]: ρ = 2670 kg/m3, cP = 4.8 · 103 m/sec, cS = 0.6cP , and μ = ρc2

S = 2.2 · 1010 Pa. The shear strength
of granite Is evaluated as σs = (0.5–1.0) · 108 Pa. The values of the elastic specific radius of the explosion source
and the specific reduced potential are taken to be the same as in [13]: αe = 68 m/kt1/3 = 4.2 · 10−3 m/J1/3, and
Φ(∞) = 440 m3/kt = 1.1 · 10−10 m3/J. As a result, we obtain ks ≈ (2–10) · 10−2, which is consistent with the
estimate of [1].

2. Seismic Efficiency of a Contact Explosion. From the aforesaid it follows that the SE of an explosion
is determined by parameters with the dimension of volume: the reduced potential Φ(∞), the displaced volume
V∞ = 4πΦ(∞), and the volume of the fractured medium V∗ = (4/3)πr3

e ≈ (4/3)π(cP t0)3.
The seismic efficiency of an earthquake is determined by the displaced volume V1 = uS1 (u is the average

displacement along the fault surface S). The value of each of the indicated volumes is proportional to the seismic
energy transferred from the source to the ambient elastic medium.

The seismic efficiency of a contact explosion can also be estimated from the values of the above-mentioned
volumes by comparing them with the corresponding volumes of the confined explosion.

Let us introduce a circular cylindrical coordinate system Orzθ with the r axis directed along the free surface
and the z axis directed downward. We place the origin at the explosion center. By virtue of the presumed rotational
symmetry, the motion does not depend on the angular coordinate θ. The explosion produces an ejection crater and
an adjacent region of fractured rock (Fig. 2).
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As shown in [14], the fracture at the site of explosion propagates to a depth z = 2r1 (r1 is the radius of
fracture along the free surface). From [15] it follows that the boundary of the fracture region S has an oval shape
close to the shape of the surface of half of an ellipsoid of revolution elongated in the z direction. We approximate
the surface S by the surface of an ellipsoid of revolution with semiaxes a = 2r1 and b = r1. The distance r = r1

from the center of the explosion to the boundary of fracture along the free surface is assumed to be equal to the
radius of the ejection crater. From experiments [9] it follows that r1 ≈ (20–22) m/kt1/3 ≈ 1.3 · 10−3 m/J1/3. The
area of the surface S is equal to

S1 = πab
(√

1 − ε2 +
arcsin ε

ε

)
= 2πr2

1

(1
2

+
2π

3
√

3

)
= 10.7r2

1, (2.1)

where ε =
√

(a2 − b2)/a2 =
√

3/2 is the eccentricity of the ellipse; arcsin ε = π/3. The volume of the fracture
region is equal to

V1 =
1
2

(4
3

πab2
)
≈ 4r3

1 .

For r1 = 21 m/kt1/3, we obtain S1 = 4.7 · 103 m2/kt2/3 = 4 m2/J2/3, and V1 = 3.7 · 104 m3/kt ≈ 10−8 m3/J. In
calculating the displaced volume V∞ = uS1, as the average displacement, we use the quantity

u = σsr1/(3μ). (2.2)

Here r1 is the average radius of the surface S (a quantity close to the average radius of the volume V1). As a result,
we obtain V∞ = 3.6(σs/μ)r3

1E0, Es = ρc2
P (σs/μ)2r3

1E0 and

ks = ρc2
P (σs/μ)2r3

1 . (2.3)

Let us compare the SE of a contact explosion (2.3) and a confined explosion (1.16) for r1 = 21 m/kt1/3

and αe = 68 m/kt1/3. Their ratio is approximately equal to 3 · 10−2. The SE of a confined explosion in granite is
ks ≈ (2–10) · 10−2, whereas the same value for a contact explosion is ks ≈ (0.7–3.0) · 10−3.

3. Seismic Efficiency of a High-Velocity Impact. The SE of a high-velocity meteorite impact on a
planet can be estimated in the same way is in the case of a contact explosion. In the case of an impact, as in the
case of an explosion, an ejection crater is formed and the crust under the crater is fractured. The diameter of the
fracture region along the free surface is approximately equal to the diameter of the crater but fracture propagates to
a larger depth than in explosions. During an explosion, fracture reaches a depth equal to the crater diameter, and
during an impact, it reaches a depth larger than the penetration of the impactor Δl ≈ L

√
ρp/ρt (L is the impactor

diameter, ρp is its density, and ρt is the density of the crust) [8]. The crater diameter is approximately five times
the impactor diameter; therefore, L ≈ 0.2Dt, and the distance to the lower boundary of the fracture region (the
Fig. 3) is equal to

r2 = Dt(1 + 0.2
√

ρp/ρt ).

Here Dt is the diameter of the transient crater, i.e., the crater diameter at the end of excavation (ejection) of the
target rock (the apparent diameter measured at the level of the initial target surface).

The configuration of the fracture region, as in the case of a contact explosion, is approximated by a semiel-
lipsoid of revolution with semiaxes a = Dt(1 + 0.2

√
ρp/ρt ) and b = 0.5Dt.

As is known, the formation of an impact crater of fairly large dimensions occurs in the so-called gravita-
tional regime, in which the crater dimensions are determined primarily by the gravity on the planet’s surface (the
gravitational regime of the formation of an impact crater on the Earth occurs at Dt � 3 km, and on the Moon, it
occurs at Dt � 20 km) [8]. In this case, for a constant value of the ratio ρp/ρt, the quantity Dt is determined only
by the dimensionless parameter 1.61gL/v2

i :

Dt = C(m/ρt)1/3(1.61gL/v2
i )

−β . (3.1)

Here m and vt are the mass and velocity of the impactor, g is the acceleration of gravity on the planet’s surface, and
C and β are constants determined from experiments. If the target material is strong rock, C = 1.6 and β = 0.22 [8].

Substitution of (3.1) into (2.1) yields the surface area of the fracture boundary

S1 =
π

2

(
1 + 0.2

√
ρp

ρt

)
D2

t

(√
1 − ε2 +

arcsin ε

ε

)
.
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Fig. 3. Configuration of the fracture region in an impact: 1) tran-
sient crater; 2) fracture region.

TABLE 1
Values of the Parameter αt = gLt/c2P for Terrestrial Planets

Planet Lt, km g, m/sec2 cP , km/sec αt

Mercury 4880 3.70 7.35 0.33
Venus 12,100 8.57 6.00 3.00
Earth 12,760 9.81 6.30 3.20
Mars 6800 3.78 6.00 0.71
Moon 3475 1.62 5.00 0.31

The displacement of the points of the boundary is estimated, as in an explosion, by formula (2.2):

u = σsr1/(3μ), r1 = (S1/π)1/2.

Next, we obtain the displaced volume V∞ = uS1, the seismic moment of the impact M0 = ρc2
P uS1, and the seismic

energy Es = 0.75σsuS1.
The seismic efficiency for an impact is defined by

ks =
2Es

mv2
i

= C1η
(
1 + 0.2

√
ρp

ρt

)(σs

μ

)2 Fr0.66

M2
i

, (3.2)

where C1 = 1.4, η = (
√

1 − ε2 + arcsin (ε)/ε), Mi = vi/cP is an analog of the Mach number, and Fr = v2
i /(gL) is

an analog of the Froude number.
We introduce the parameter αt = gLt/c2

P (Lt is the diameter of the target planet). Then, formula (3.2) can
be written as

ks = C1η
(
1 + 0.2

√
ρp

ρt

)(σs

μ

)2 1
M0.68

i

(Lt/L

αt

)0.66

≈ C1η
(
1 + 0.2

√
ρp

ρt

)(σs

μ

)2(Lt/L

αtMi

)2/3

. (3.3)

Relation (3.3) implies that the SE of an impact on a particular planet decreases as (MiL)−2/3 with increasing impact
velocity and impactor dimensions. Since for terrestrial planets, the Mach number and the strength parameter σs/μ

vary in a rather narrow range (by approximately an order of magnitude), the impactor dimensions have the main
effect on the SE of an impact. Therefore, the SE of an impact varies over a very broad range. The values of the
parameter αt are given in Table 1.

In the case of aerolite impact (ρp/ρt ≈ 1, ε = 0.97, arcsin ε = 1.33, and η = 1.65), formula (3.3) is simplified:

ks = 2.8
(σs

μ

)2(Lt/L

αtMi

)2/3

. (3.4)
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TABLE 2
Seismic Efficiency ks of a Meteorite Impact on the Earth

L, km Lt/L
ks

Mi = 1 Mi = 12

1 1.276 · 104 7.0 · 10−3 0.30 · 10−3

10 1.276 · 103 1.5 · 10−4 2.90 · 10−5

100 1.276 · 102 3.2 · 10−5 0.65 · 10−5

1000 1.276 · 101 7.0 · 10−6 1.40 · 10−6

1
_6

_5

_4

_3

_2

10-1 10 102 103 L, km

logks

Mi=1

Explosion

Impact

Mi=12

Fig. 4. Seismic efficiency of a contact explosion and an impact on a planet’s crust for σs/μ = 10−3.

We determine the SE of a meteorite impact on the Earth. The velocities of the meteorites approaching
the Earth are in the range from 12 km/sec (overtaking impact) to 72 km/sec (meeting impact) [16]. In view of
atmospheric braking, the corresponding Mach numbers can have values of 1 to 12. The relative strength of the
Earth’s crust is σs/μ ≈ 10−3. Table 2 gives SE values calculated by formula (3.4) for various diameters of meteorites
and limiting values of the Mach number.

Figure 4 gives curves of ks(L) for an impact and explosion, from which it follows that the SE of an impact
of a meteorite of diameter L = 1–50 km can be higher than that of a contact explosion. If the meteorite diameter
L > 50 km, the SE of its impact on the Earth is smaller than that of an explosion.

Let us estimate the SE of an impact effect capable of forming a crater equal to the crater of the Sea of Rains
on the Moon. The impact parameters are calculated in [17]. An iron meteorite of diameter L = 35 km impacts the
Moon surface at a velocity vi = 15 km/sec. The material of the Moon crust is gabbroic anorthosite with parameters
ρt = 2940 kg/m3, g = 1.62 m/sec2, αt = gLt/c2

P = 0.31, cP = 5000 m/sec, γ = cS/cP = 0.58, and σs/μ = 2.4 · 10−3

(the last three parameters are estimates of the author). Using the above formulas, we obtain ks = 10−3. The
seismic efficiency of a contact explosion with an energy equal to the kinetic energy of the meteorite would have the
value ks = 10−4–10−3.

Conclusions. The seismic efficiency of contact explosions and meteorite impacts on a planet depends on
the scale of fracture of the crust rock and the volume of the medium displaced into the elastic-strain region. Its
value increases with increasing strength of the crust material and decreases with decreasing meteorite dimensions
and velocity. For a relatively weak impact, its SE is higher than the SE of a contact explosion of comparable
energy, and for a relatively strong impact, it is lower than the SE of a contact explosion of comparable energy. The
seismic efficiency of meteorite impacts varies over a wide range from the value ks ≈ 10−2 for relatively weak impacts
(L/Lt � 10−5 and Mi ≈ 1–2) to the value ks ≈ 10−6 (L/Lt � 10−5 and Mi ≈ 12) for very strong impacts.

The decrease in the SE of an impact with increasing kinetic energy of the impactor is due to two main factors:
the gravity on the planet and the strength of the crust. An increase in the kinetic energy due to an increase in the
meteorite dimensions results in an increase in the work expended in overcoming gravity in the crater-forming flow
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process. This leads to a relative decrease in the diameter of the transient crater, the adjacent region of fractured
rock, residual displacements, the surface area of the fracture region, the displaced volume, and the SE.

It should be noted that the above estimates of the SE are not fairly accurate. Contact explosions and impacts
generate both longitudinal and transverse waves. The method of estimating the SE described above ignores the
contribution of transverse waves. The transverse-wave energy is of the same order of magnitude as the longitudinal-
wave energy. In addition, one should take into account the contribution of the waves generated by impact of
ejections on the planet’s surface. However, an impact of the ejected rock on the planet’s surface cannot impart it
an energy higher than the seismic energy imparted by the impactor. Therefore, the increase in the SE due to the
impact of ejections cannot exceed the value given by formulas (3.2) or (3.3). Thus, the total increase in the SE
(taking into account the energy of transverse elastic waves and the waves generated by the impact of ejections)
should not change the order of the quantity SE estimated in the present work.

I thank V. A. Simonenko for supporting the present study and G. A. Shishkina for useful discussions and
critical comments .
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